
Soĕware Development (2500)
Lectures 4 and 5: Expressions, Conditions, and Iteration

M.R.C. van Dongen

October 4, 2010

Contents
1 Outline 2

2 Arithmetic Expressions 2
2.1 Why Bother . 2
2.2 Operators . 3
2.3 Simple Expressions . 5
2.4 Associativity . 5
2.5 Precedence . 7

3 DecisionMaking 8
3.1 ăe if Statement . 8
3.2 Comparisons . 8
3.3 Boolean Expressions . 9
3.4 ăe if-else Statement . 9
3.5 Dangling else . 10
3.6 ăe Conditional Operator . 11

4 Iteration 12
4.1 ăe for Statement . 12
4.2 ăe while Statement . 13
4.3 ăe do-while Statement . 13

5 Increment and Decrement 14

6 Precedence Table 16

7 Invariants 16

1

8 Puzzlers 19
8.1 Test for Oddness . 19
8.2 Loop de Loop . 19

9 Acknowledgements 20

1 Outline
ăese lecture notes do not correspond to any particular part in the book. ăemain purpose of them is to
đll in some of the gaps which aren’t explained in the book. Aĕer studying these notes you should be able
to write basic arithmetic expressions in Java, know how Java’s evaluates its expressions, understand
the notions of precedence and associativity, make decisions using if statements, use Java’s bounded and
unbounded iteration constructs, and be able to put basic inĂariants in your programs. Invariants are not
studied in the book.

2 Arithmetic Expressions
ăis section studies arithmetic expressions in Java and how such expressions are evaluated. Here evalu-
ating an expression means computing its value and making sure the expression’s possible side-effects take
place. Here a side-effect is a change in state of the overall computation, e.g. a variable’s value may change
during the computation, the computation may output something, or read in some input. To appreciate
the difficulties, try to predict the output of the following computation.

int a = 2 * 3 + 1;
int b = 2 * (3 + 1);
int c = (2 * 3) + 1;
System.out.println(a);
System.out.println(b);
System.out.println(c);

Java

As you may have guessed this outputs the numbers 7, 8, and 7 on separate lines. In the remain-
der of this section we shall study Java’s mechanism for evaluating similar as well as more complicated
expressions.

2.1 Why Bother
ăere are two reasons for having evaluation rules. ăey are related to “common sense” conventions. For
example, when you write ‘1 + 2 * 3’ you expect ‘1 + (2 * 3)’, not ‘(1 + 2) * 3’. Likewise, when
you write ‘1 - 2 - 3’ you expect ‘(1 - 2) - 3’, not ‘1 - (2 - 3)’.

2

2.2 Operators
For simplicity we shall restrict our computations to arithmetic. Most of the time your programs will use
only a few operators:

Assignment: ‘=’;

Addition: ‘+’;

Subtraction: ‘-’;

Multiplication: ‘*’;

Division: ‘/’;

Remainder: ‘%’;

Plus: unary ‘+’; and

Negation: unary ‘-’.

Most arithmetic operators are deđned for integer and Ĕoats. ăe only operator which is not deđned
for Ĕoats is integer remainder: ‘%’.

Arguably, integer division and remainder are not properly deđned in the presence of one or more
negative operands. For example, the sign of the result is the same as the sign of the đrst operand. (Except
when the result is zero and the đrst operand is not.) Aside from this, remainder works as expected. You
get a run-time error if the second operand is zero. Let ⟨lhs⟩ be an integer and let ⟨rhs⟩ be a non-zero
integer, then

• ⟨lhs⟩ / ⟨rhs⟩ gives the integral part of dividing ⟨lhs⟩ by ⟨rhs⟩. However, the sign of the result
is equal to the sign of ⟨lhs⟩.

• ⟨lhs⟩ % ⟨rhs⟩ gives the remainder of the division.

In all cases we have the following equality:

⟨lhs⟩ = ((⟨lhs⟩ / ⟨rhs⟩) * ⟨rhs⟩) + (⟨lhs⟩ % ⟨rhs⟩) .

ăe equality operator in Java is written using two equality signs: ==, so 1 == 1 is true, and 1 ==
2 is false. ăe following are some examples.

• 4 / 2 == 2, so 4 % 2 == 0.

• 3 / 2 == 1, so 3 % 2 == 1.

• 2 / 2 == 1, so 2 % 2 == 0.

• 1 / 2 == 0, so 1 % 2 == 1.

3

• 0 / 2 == 0, so 0 % 2 == 0.

• 7 / 3 == 2, so 7 % 3 == 1.

• 19 / 5 == 3, so 19 % 5 == 4.

Computing remainders is useful formodular (clock) arithmetic. We have

• 0 % 2 == 0;

• 1 % 2 == 1;

• 2 % 2 == 0;

• 3 % 2 == 1;

• 4 % 2 == 0;

• ….

Note that the numbers in the last column are of the form 0, 1, 0, 1, …. It is an inđnite sequence of blocks
of numbers. Each block is of the form ‘0, 1’.

Assuming that ⟨rhs⟩ is greater than 1, we also have

• 0 % ⟨rhs⟩ == 0;

• 1 % ⟨rhs⟩ == 1;

• …

• (⟨rhs⟩ - 1) % ⟨rhs⟩ == ⟨rhs⟩ - 1;

• ⟨rhs⟩ % ⟨rhs⟩ == 0;

• (⟨rhs⟩ + 1) % ⟨rhs⟩ == 1;

• ….

ăe numbers in the last column form an inđnite sequence of successive numbers of a “clock” with ⟨rhs⟩
numbers on its face. ăe number at the top is 0, the next number (in clockwise direction) is 1, and so
on. ăe last number — it is the number before the 0— is ⟨rhs⟩ - 1. If we enumerate the numbers in
clockwise direction we get 0, 1, …, ⟨rhs⟩ - 1. If we continue counting in clockwise direction from the
last position, we get 0, 1, …, ⟨rhs⟩ - 1, and so on.

4

2.3 Simple Expressions
Simple expressions are easy to evaluate. For example, to evaluate the following expression

⟨variable⟩1 ⟨binary arithmetic operator⟩ ⟨variable⟩2 ,

we đrst take the value of ⟨variable⟩1, then take the value of ⟨variable⟩2, and then apply ⟨binary
arithmetic operator⟩. Note that đrst taking the value of ⟨variable⟩2, then taking the value
of ⟨variable⟩1, and then applying ⟨binary arithmetic operator⟩ gives us the same value. In
general this does not hold and the order of evaluation matters:

Assignments: ăe đrst reason why the order of computations matters is that sub-computations may
carry out assignments:

int a = 2;
int b = a * (a = 1);

Java

Side effects: In general, the order of evaluationmakes a difference if sub-computations have side-effects
or dependon state. Examples: computations that use the same, shared, randomnumber generator,
computations that perform input and output, and so on.

2.4 Associativity
An important notion that determines expression evaluation is associativity. In the following, let⊕ be a
binary operator, and let v1, …, vn be n values.

leĕ-to-right: If⊕ associates to the leě then

v1 ⊕ v2 ⊕ · · · ⊕ vn = (((v1 ⊕ v2)⊕ · · ·)⊕ vn .

Here the computation starts at the leĕ and expands to the right. If ⊕ is leĕ associative, we also
say that it is leě-to-right associative. All arithmetic operators are leĕ associative. Most remaining
operators are also leĕ associative.

int answer = 840 / 10 / 2; // Assigns 42. Java

right-to-leĕ: Only a few operators are right associative. If⊕ associates to the right then

vn ⊕ · · · ⊕ v2 ⊕ v1 = vn ⊕ (· · · ⊕ (v2 ⊕ v1)) .

Here the computation starts to the right and expands to the leĕ. If ⊕ is right associative we also
say that it is right-to-leě associative. An important right associative operator is the assignment
operator.

5

int result1, result2, result3;
result3 = result2 = result1 = 1;
// result3 = (result2 = (result1 = 1));

Java

Regardless of operator associativity, the leĕ operand is always evaluated đrst. If the leĕ-hand-side
operand involves an expression with side-effects, then the order of evaluation may make a difference,
even for right associative operators. For example, let’s assume you write the following:

int[] n = new int[4];
int i = 2;
n[i = 1] = i;

Java

Here ‘int[] n = new int[4]’ declares an int array n of size 4. Aĕer these statements i and
n[1] are equal to 1. As a more complicated example, consider the following:

int[] n = new int[4];
int i = 2;
n[i = 1] = n[i = i + 2] = i;

Java

Aĕer these statements i, n[1], and n[3] are equal to 3.
Note that the previous example program is not particularly clear: it takes a long time to đgure out

what it does. It ismuch clearer not to rely on the side-effects of the assignments inside the array subscripts
and write.

int[] n = new int[4];
int i = 2;
i = 1;
i = i + 2;
n[1] = n[i] = i;

Java

Even better, write

int[] n = new int[4];
int i = 3;
n[1] = n[3] = 3;

Java

Arguments ofmethods are also evaluated from leĕ to right. ăe following contrived exampledemon-
strates this.

6

private int add(int first, int second) {
return first + second;

}

private void example() {
int number = 0;
int result = add(number = 1, number + 1);
System.out.println(result);

}

Java

ăe method example outputs ‘3’. To see how this works, notice that the methods arguments are
evaluated from leĕ to right. ăe đrst argument is the expression ‘number = 1’, which is an assignment.
Since this is the leĕ-most argument, the expression is evaluated. Evaluating the assignment results assigns
the value 1 to number. Java assignments also result in a value: the assigned value. ăerefore, the đrst
argument is 1. ăe next argument is the expression ‘number + 1’. Evaluating this expression results in
the value 2, so the second argument is 2. Next the method sum() is called with 1 as its đrst and 2 as
its second argument. ăe method returns 3 and this is what is printed.

ăe previous example teaches an important lesson:

‘Reasoning about expressionswith sub-assignments andother side-effects is difficult. Avoid
side-effects in expressions or else….’ — Anonymous Java Lecturer.

2.5 Precedence
In general Java expressions are evaluated from leĕ to right. However, some operators should be applied
before others. We say that these operators have a higher precedence level. For example, multiplication
and division have a higher precedence than addition and subtraction.

int three = 1 + 1 * 2; // Assigns 3 to three. Java

It is always possible to override operator precedence using parentheses. For example, the following
assigns 4 to four.

int three = 1 + 1 * 2; // Assigns 3 to three.
int four = (1 + 1) * 2; // Assigns 4 to four.

Java

Most programmers don’t know the exact operator precedence levels. Even if they do, they usually
use parentheses for clarity:

int result = 1 + ((2 * 3) / 4) + 5; Java

7

3 DecisionMaking
ăere are three constructs that affect the Ĕow of control.

• ăe if statement;

• ăe if-else statement; and

• ăe switch statement.

ăe đrst two constructs depend on boolean expressions. For the moment we shall postpone the dis-
cussion of the switch statement.

3.1 ăe if Statement
ăe conditional or if statement written as follows:

if (

⟨

condition

⟩

)

⟨

statement

⟩

Java

It works as expected: ⟨statement⟩ is carried out if and only if (iff) ⟨condition⟩ is true.

3.2 Comparisons
Usually conditions are made using comparisons, which can be made as follows:

⟨fst⟩ == ⟨snd⟩: true iff ⟨fst⟩ is equal to ⟨snd⟩.

⟨fst⟩ != ⟨snd⟩: true iff ⟨fst⟩ is not equal to ⟨snd⟩.

⟨fst⟩ < ⟨snd⟩: true iff ⟨fst⟩ is less than ⟨snd⟩.

⟨fst⟩ <= ⟨snd⟩: true iff ⟨fst⟩ is less than or equal to ⟨snd⟩.

⟨fst⟩ > ⟨snd⟩: true iff ⟨fst⟩ is greater than ⟨snd⟩.

⟨fst⟩ >= ⟨snd⟩: true iff ⟨fst⟩ is greater than or equal to ⟨snd⟩.

ăe following is an example.

if (temperatureInDegrees < 0) {
System.out.println(”It’s freezing.”);

}

Java

Note that the braces may be omitted if there’s only one statement in the if clause.

8

3.3 Boolean Expressions
ăe following shows boolean operators for negation, conjunction, and disjunction.

! ⟨expr⟩: true iff ⟨expr⟩ is false.

⟨fst⟩ && ⟨snd⟩: true iff ⟨fst⟩ and ⟨snd⟩ are true.

⟨fst⟩ || ⟨snd⟩: true iff ⟨fst⟩ or ⟨snd⟩ are true.

3.4 ăe if-else Statement
ăe if-else statement is written as follows:

if (⟨condition⟩)
⟨first statement⟩

else
⟨second statement⟩

Java

It should not come as a surprise that this carries out ⟨first statement⟩ if ⟨condition⟩ is
⟨true⟩ and carries out ⟨second statement⟩ otherwise.

ăe following is an example.

if (temperatureInDegrees < 0) {
System.out.println(”It’s freezing.”);

} else {
System.out.println(”It’s not freezing.”);

}

Java

ăefollowing is a common“problem”with startingprogrammers. Assume that the condition ⟨condition⟩
is side-effect free. Next consider the following.

if (

⟨

condition

⟩

) {
//

⟨

condition

⟩

is true

⟨

statements

⟩

} else if (!

⟨

condition

⟩

) {
//

⟨

condition

⟩

is not true

⟨

more statements

⟩

}

Java

In this previous example, the condition for the else statement is completely superĔuous (it’s a tau-
tology: it has to be true). Writing the additional condition is very confusing because writing it suggests
the condition is needed. It is much clearer to write:

9

if (
⟨
condition

⟩
) {

//
⟨
condition

⟩
is true

⟨
statements

⟩
} else {

//
⟨
condition

⟩
is not true

⟨
more statements

⟩
}

Java

In a similar vein, assume that all conditions are side-effect free. Writing the following is also confus-
ing:

if (

⟨

condition

⟩

1) {
//

⟨

condition

⟩

1 is true.

⟨

statements

⟩

1
} else if (!

⟨

condition

⟩

1 &&

⟨

condition

⟩

2) {
//

⟨

condition

⟩

1 is false and
//

⟨

condition

⟩

2 is true.

⟨

statements

⟩

2
} else if (!

⟨

condition

⟩

1 && !

⟨

condition

⟩

2) {
//

⟨

condition

⟩

1 is false and
//

⟨

condition

⟩

2 is false.

⟨

statements

⟩

3
}

Java

ăe following is much clearer:

if (

⟨

condition

⟩

1) {
//

⟨

condition

⟩

1 is true.

⟨

statements

⟩

1
} else if (

⟨

condition

⟩

2) {
//

⟨

condition

⟩

1 is false and
//

⟨

condition

⟩

2 is true.

⟨

statements

⟩

2
} else {

//

⟨

condition

⟩

1 is false and
//

⟨

condition

⟩

2 is false.

⟨

statements

⟩

3
}

Java

3.5 Dangling else
When a conditional statement is parsed, Java always tries to match an else clause with the nearest
preceding if clause, so

10

if (condition1)
if (condition2)

⟨
stuff

⟩
else

⟨
more stuff

⟩

Java

is equivalent to

if (condition1) {
if (condition2) {

⟨

stuff

⟩
} else {

⟨

more stuff

⟩
}

}

Java

It helps if you ass the braces in your programs.
ăis equivalence leads to an errorwhich is known in the literature as thedanglingelse. ăeproblem

manifests itself in programs like the following:

if (condition1)
if (condition2)

⟨

stuff

⟩

else

⟨

more stuff

⟩

Java

ăe program is deliberately indented in the wrong way: the else branch actually belongs to the
second if. Because of layout problems like this, it becomes easy to think that the else actually belongs
to the đrst if — especially if the statements in ⟨stuff⟩ take many lines. As suggested in the previous
paragraph you can avoid this by adding additional braces.

3.6 ăeConditional Operator
ăe conditional operator is related to the if-else statement. ăe difference is that it returns a value.

(⟨condition⟩ ? ⟨first⟩ : ⟨second⟩) Java

• Returns ⟨first⟩ if ⟨condition⟩ is true;

• Returns ⟨second⟩ if ⟨condition⟩ is false.

ăe following is an example.

String str = (temperatureInDegrees < 0
? ”It’s freezing!”
: ”It’s not freezing!”);

System.out.println(str);

Java

11

4 Iteration
ăis section studies Java’s bounded and unbounded iteration constructs.

4.1 ăe for Statement
ăe for construct is mainly used for bounded iteration. Here a bounded iteration is an iteration which
usually depends on a single induction variable or loop variable that counts the number of iterations and ex-
its the loopwhen the variable’s value reaches and/or exceeds a predeđned threshold value. Each iteration
usually increments or decrements the induction variable’s value by a đxed value — usually 1. Usually,
bounded iteration in Java is implemented using the for statement. ăe following is the syntax for the
for statement.

for (

⟨

initialisation

⟩

;

⟨

condition

⟩

;

⟨

update

⟩

)

⟨

statement

⟩

Java

1. ăe statement starts by carrying out ⟨initialisation⟩, which should be a single statement or
declaration. ăe purpose of ⟨initialisation⟩ is to initialise the variables that “control” the
loop. ăese variables are usually called induction variables. Is is also to use an empty statement for
⟨initialisation⟩.

2. Next the for construct continues by executing a sequence of zero or more “loops”. ăe boolean
expression ⟨condition⟩ is used todetermine if thenext loop shouldbe carriedout. If ⟨condition⟩
is true then the next loop is executed. Otherwise, the for construct stops. If a loop is executed,
then it starts with statement.

3. ăe statement ⟨update⟩ is carried out at the end of each loop. Usually, ⟨update⟩ adjusts the
value of the induction variable by incrementing or decrementing its value.

ăe following is an example that outputs all binary digits.

int digit; // Declare induction variable.
for (digit = 0; digit <= 1; digit = digit + 1) {

System.out.print(”Next binary digit is ”);
System.out.println(digit);

}

Java

ăe following is an alternative and better way to implement the previous example.

for (int digit = 0; digit <= 1; digit = digit + 1) {
System.out.print(”Next binary digit is ”);
System.out.println(digit);

}

Java

12

ăe main advantage is that this version keeps the induction/loop variable digit local to the for
statement. Stated differently, the improved version restricts the visibility of the variable to the for con-
struct. By restricting the visibility of digit to the loop, this avoids certain kinds of errors. For example,
any reference outside the for loop to an undeclared variable called digitwill now result in a compiler
error.

4.2 ăe while Statement
ăis construct is mainly used for unbounded iteration. Here a unbounded iteration is an iteration with a
complicated termination condition. ăe following is the syntax for the while statement.

while (

⟨

condition

⟩

)

⟨

statement

⟩

Java

ăis carries out ⟨statement⟩while ⟨condition⟩ holds. So each loop consists of a single execution
of ⟨statement⟩, but the iteration is only carried out if ⟨condition⟩ is true. ăe following is an
example.

int[] keys = { 1, 4, 6, 8 };
int index = 0;
int key = 6;
while (index != keys.length && keys[index] != key) {

index = index + 1;
}
if (index != keys.length) {

System.out.println(”key is in keys.”);
} else {

System.out.println(”key is not in keys.”);
}

Java

4.3 ăe do-while Statement
Java also has a do-while statement. ăis almost works like the while statement. However, this time
the condition is evaluated aěer the loop.

do

⟨

statement

⟩

while (

⟨

condition

⟩

);

Java

A compound statement is a sequence of statements which are grouped together using braces:

13

{

⟨
statement

⟩1
;

⟨
statement

⟩2
;

...
}

Java

Even if the ⟨statement⟩ in the do-while statement is not a compound statement (does not have
braces), it is clearer if you add braces in the do-while loop:

do {

⟨

statement

⟩
} while (

⟨

condition

⟩

);

Java

ăe do-while statement which is listed at the start of this section is equivalent to the following:

⟨

statement

⟩

while (

⟨

condition

⟩

)

⟨

statement

⟩

Java

Most applications can be implemented without using the do-while statement, and this is usually
clearer. However, for some applications it may be useful. For example,

int number = -1;
// Read number until the number is positive.
do {

number =

⟨

read next number

⟩

;
if (number <= 0) {

⟨

output error: number must be positive

⟩

;
}

} while (number <= 0);

Java

5 Increment and Decrement
ăis section explains pre- and post-increment and decrement operators, which are commonly used in
for and while loops to adjust the values of the induction variables in such loops. Unfortunately, there
operators are not always well understood.

Java has four operators for incrementing and decrementing variables. ăese operators do not in-
volve an explicit “assignment” operator (=) but they do have side-effects. It is usually “safe” to use these
operators in isolation. For obvious reasons — they have side-effects — they should be avoided in non-
trivial situations.

ăe post-increment operator is commonly used to increment lvalues in loops. (Remember that an
lvalue is something which you can assign a value to.) You use it as follows: ‘⟨lvalue⟩ ++’. Before

14

explaining what this does, note that ‘⟨lvalue⟩ ++’ is an expression, which returns a value. Effectively it
does two things:

• It returns the initial value of ⟨lvalue⟩.

• As a side-effect it increments ⟨lvalue⟩.

When used in isolation, this effectively increments ⟨lvalue⟩. Care should be taken in other situations.
ăe following is a typical example of post-increment.

for (int var = START; var < LIMIT; var ++) {
// START <= var && var < LIMIT.

⟨

stuff

⟩
}

Java

In this example, the expression var ++ increments the variable var at the end of each iteration.
ăe expression is used in isolation and works as “expected”: if ⟨stuff⟩ does not change the value of
var then inside the for statement varwill have values ranging from START to LIMIT - 1 (including
LIMIT - 1). Make sure you understand this.

ăe following is another typical example of post-increment. However, here the post-increment op-
erator is not used in isolation.

for (int var = START; var ++ < LIMIT;) {
// START < var && var <= LIMIT.

⟨

stuff

⟩

}

Java

Just as in the previous example, the expression var ++ increments the variable var. However,
the expression var ++ is part of the more complex expression var ++ < LIMIT. To evaluate this
more complex expression you đrst evaluate the đrst operand, then evaluate the second operand, and then
evaluate the values which result from these evaluations. Evaluating the đrst operand results in the initial
value of var and as a side-effect it increments var. So the comparison var ++ < LIMIT compares
the initial value of var and LIMIT. Stated differently, the expression var ++ returns the current value
of var and then increments var. Note that here the post-increment is not used in isolation and works
different as before: if ⟨stuff⟩ does not change the value of var then inside the for statement varwill
have values ranging from START + 1 to LIMIT (including LIMIT). ăis is different from the previous
example. Make sure you understand this.

ăe post-decrement operator is used as follows: ⟨lvalue⟩ --. It works similar to post-increment
but it decrements ⟨lvalue⟩.

ăe pre-increment operator is used as follows: ++ ⟨lvalue⟩. It works similar to post-increment,
but it đrst increments ⟨lvalue⟩, and then returns the (resulting) value of ⟨lvalue⟩. ăepre-decrement
operator, which is written -- ⟨lvalue⟩, works in a similar way: it đrst decrements ⟨lvalue⟩ and then
returns the resulting value of ⟨lvalue⟩.

ăe increment and decrement operations should be used with caution. For example, you can write
‘var = var ++’. Effectively, this does “nothing”. We đrst evaluate the rhs of the assignment. ăis gives

15

us a value, which we assign. To evaluate the rhs we apply the post-increment operator. ăis returns the
initial value of var. Next this increments var. So the result of evaluating the rhs is the initial value of
var. Assigning it to var effectively does “nothing”.

6 Partial Precedence Table
ăe purpose of this section is to present a partial operator precedence table for the operators which are
studied in these notes. ăe table is listed in Table 1. ăe higer an operator in the table, the higher its
precedence. ăe expression ‘⟨lvalue⟩’ in the table means an expression which can be assigned a value.

Description Operator Associativity

post-*crement ⟨lvalue⟩++ and ⟨lvalue⟩-- leĕ
pre-*crement, unary ++⟨lvalue⟩, --⟨lvalue⟩, +⟨expr⟩, -⟨expr⟩, and !⟨expr⟩ right
object creation new right
multiplicative *, /, and % leĕ
additive + and - right
relational <, >, <=, and >= leĕ
equality == and != leĕ
logical and && leĕ
logical or || leĕ
ternary ⟨condition⟩ ? ⟨expr⟩ : ⟨expr⟩ right
assignment =, +=, -=, *=, /=, and %= right

Table 1: Partial operator precedence table.

ăe ‘l’ and the ‘value’ in ‘lvalue’ probably come from the fact that an ⟨lvalue⟩ may be regarded as a
“value” which may occur at the leĕ hand side of an assignment.

7 Invariants
ăis section is not in the book. ăe following Java code is supposed to all all integers from 0 to 100.

int i, sum;

i = 0;
sum = 0;
while (i < 100) {
i = i + 1;
sum = sum + i;

} // sum == 1 + 2 + ... + 100

Java

16

In the remainder of this section we shall prove the previous code actually does add all non-negative
integers that are less than or equal to 100. To do this, we shall need the notion of an inĂariant.

An inĂariant is a meaningful “comment” that relates the current values of the variables in the pro-
gram. Invariants are useful for several reasons.

Concretize: ăey make the relationships explicit. ăis helps when writing the program.

Correctness: ăey may help you prove the program is correct.

Maintenance: By putting in the invariants, you remind yourself and colleagues about the purpose of
the variables and how they control program execution. ăis makes it easier to understand the
code and easier to modify the code, thereby improving program maintainability.

Good programmers add comments to their programs which state the invariants.
ăe following shows some useless comments which your lecturer has seen over the past years. ăese

comments are useless because any Java programmer should know they are true. Adding such comments
obfuscates the rest of the program.

// variable declaration.
int x;

// assign zero to x.
x = 0;

// add two to x.
x = x + 2;

// increment x.
x ++;

Don’t Try this at Home

ăe following is a useful relationshipof theif statement. Regardless of the actual valueof ⟨condition⟩,
we know that ⟨condition⟩ should be false at the start of the else clause. Here it is assumed that
⟨condition⟩ is side-effect free.

if (

⟨

condition

⟩

) {
//

⟨

condition

⟩

...
}
// !

⟨

condition

⟩

Java

Likewise, the following also holds.

17

if (
⟨
condition

⟩
) {

//
⟨
condition

⟩...
} else {

// !
⟨
condition

⟩...
}

Java

ăe following shows that invariants also help when you’re using the while statement. ăe idea is
that the termination condition of the while statement together with a proper condition before and
at the end of body of the while statement let you derive a condition which should hold immediately
aĕer the while statement. Again it is assumed that all conditions are side-effect free. In addition it is
assumed that there is no explicit break from the while loop. ăe following demonstrates the idea: the
invariant at the end follows from the previous invariants and the termination conditions.

//

⟨

condition

⟩

1
while (

⟨

condition

⟩

2) {
...
//

⟨

condition

⟩

1
}

//

⟨

condition

⟩

1 && !

⟨

condition

⟩

2

Java

• It is easy to see why ⟨condition⟩2 should be false aĕer the while statement: the condition
of the while loop failed.

• To see why ⟨condition⟩1 should also hold immediately aĕer the while statement, notice that
⟨condition⟩1 was true just before the condition of the while loop was evaluated. Regardless
of how many iterations there are, it has to be true (since both conditions are side-effect free).

ăis relationship is frequently used to prove things about the while statement.

int i, sum;

i = 0;
sum = 0; // i <= 100 && sum == 0 + 1 + … + i
while (i < 100) { // i < 100 && sum == 0 + 1 + … + i
i = i + 1; // i <= 100 && sum == 0 + 1 + … + i-1
sum = sum + i; // i <= 100 && sum == 0 + 1 + … + i

} // i >= 100 && i <= 100 && sum == 0 + 1 + … + i
// i == 100 && sum == 0 + 1 + … + i

// sum == 0 + 1 + … + 100

Java

18

Good programmers are so used to using these invariants that they automatically put in the two key
invariants:

• ăe condition i < 100 && sum == 0 + 1 + … + i at the start of the body of the while
loop.

• ăe condition sum == 0 + 1 + … + 100 aĕer the while loop.

ăe remaining invariants usually follow from these two.

8 Puzzlers
ăis section presents two problems which should help you understand division and remainder and ap-
preciate some pitfalls when implementing loops. Both puzzles are based on [Bloch and Gaĕer, 2005].

8.1 Test for Oddness
Before you start, think about how you’d implement a method isOdd() that takes an int and returns
true if and only if its argument is odd. If you don’t know how to write methods then think about how
you’d detect whether a given int is odd.

Now that you’ve thought about the implementation, you’re ready for the đrst problem [Bloch and
Gaĕer, 2005, Puzzle 1]. ăe problem is as follows: what is wrong with the implementation? Hint: the
method returns the wrong result in about 1 out of every 4 cases.

public static boolean isOdd(int number) {
return number % 2 == 1;

}

Don’t Try this at Home

ăe problem with the previous implementation is that it returns the wrong result if number is neg-
ative and odd. If you remember the rules for integer division and remainder the sign of the result for
division and remainder is the same as that of the đrst operand, provided the result is non-zero. For ex-
ample, -1 / 2 == 0 and -1 % 2 == -1, -2 / 2 == -1 and -2 % 2 == 0, -3 / 2 == -1 and
-3 % 2 == -1, -4 / 2 == -2 and -4 % 2 == 0, and so on. ăe obvious solution is the following.

public static boolean isOdd(int number) {
return number % 2 != 0;

}

Java

8.2 Loop de Loop
ăe next puzzle is based on [Bloch and Gaĕer, 2005, Puzzle 26]. ăe following program counts the
iterations in the for loop. What does it print? (Remember that Integer.MAX_VALUE is the largest
possible int value.)

19

public class LoopDeLoop {
public static void main(String[] args) {

final int LAST_INDEX = Integer.MAX_VALUE;
final int FIRST_INDEX = Integer.MAX_VALUE - 10;
int count = 0;
for (int index = FIRST_INDEX; index <= LAST_INDEX; index++) {

count ++;
}
System.out.println(count);

}
}

Don’t Try this at Home

ăe correct answer is that the program doesn’t print anything: it starts an inđnite loop. ăe key to
understanding this is that the test ‘index <= LAST_INDEX’ is always true, regardless of the value of
index. Add to this thatInteger.MAX_VALUE + 1 == Integer.MIN_VALUE (because of overĔow)
et Ăoila.

9 Acknowledgements
ăepartial operator precedence table is basedonhttp://download.oracle.com/javase/tutorial/
java/nutsandbolts/operators.html. ăe puzzlers are based on [Bloch and Gaĕer, 2005, Puz-
zles 1 and 26].

References
[Bloch and Gaĕer, 2005] Joshua Bloch and Neal Gaĕer. Java Puzzlers Traps, Pitfalls, and Corner

Cases. Addison-Wesley, 2005.

20

